TEMA 4

 

 



 

LOS NÚMEROS DECIMALES


 

 

 

 


 



LOS NÚMEROS DECIMALES”





Si dividimos 1 Unidad en diez partes obtenemos 1 décima.

  

Si dividimos 1 Unidad en cien partes obtenemos 1 centésima.

  

Si dividimos 1 Unidad en mil partes obtenemos 1 milésima.

  

  

1 U = 10 d = 100 c = 1.000 m

 



 

NOTAS:

  

Un número decimal se puede expresar como fracción decimal, y viceversa.

  

Ejemplos:                                         Parte Entera / Parte decimal

  

C

D

U

d

c

m

 

 

0,

5

 

 

 

 

Se lee:

Como nº decimal se escribe

Como fracción se escribe:

Cinco décimas

     0,5

         5

         10

 

 

 



La parte entera está separada de la parte decimal por una coma (,).

  

Además, la parte entera se escibe con letras mayúsculas y la decimal

 

con minúsculas.



 

                                                   Parte Entera / Parte decimal

C

  D

  U

   d

   c

m

 

 

  0,

   2

   3

 



Se lee:

Como nº decimal se escribe

Como fracción se escribe:

Veintitrés centésimas

    0,23

          23

          100





                                                  Parte Entera / Parte decimal

  C

  D

  U

   d

   c

   m

 

 

  2,

   1

   5

   8



Se lee:

Como nº decimal se escribe

Como fracción se escribe:

Dos unidades y ciento cincuenta y ocho milésimas

2,158

 2.158

     1.000







¿CÓMO SE DESCOMPONE UN Nº DECIMAL?

 

 

Muy fácil, mira el ejemplo:



    U

d

c

m

    6,

7

1

4

 

  • Según la posición de sus cifras: 6 U + 7 d + 1 c + 4 m

 

  • Según el valor de sus cifras: 6 + 0,7 + 0,01 + 0,004

 

 

 

 

 

 

2.- “COMPARACIÓN Y ORDENACIÓN



DE DECIMALES”



 

 

 

Para comparar y luego poder ordenar dos (o más números decimales), debemos ... :

 

1º.- Comparar la parte entera de cada nº:

 

(El nº cuya parte entera sea más grande, será el nº mayor).

 

2º.- Pero si ambas partes enteras son iguales debemos seguir comparando sus partes decimales (empezando por las décimas).

 

   

Ejemplo: (Partes enteras distintas)

 

8,34 y 2, 41

 

1º.- Comparamos la parte entera de cada nº: 8 > 2

 

2º.- Como la parte entera de uno de los números es mayor que la otra, no hace falta seguir comparando más cifras.

 

Por tanto: 8,34 > 2,41

 

Ejemplo: (Partes enteras iguales)

 

2,34 y 2, 41

 

1º.- Comparamos la parte entera de cada nº: 2 = 2

 

2º.- Como ambas partes son iguales, seguimos comparando su partes decimal:

 

Las décimas: 3 < 4

 

Por tanto: 2,34 < 2,41

 

 

RECUERDA:

 

  • Mayor que ... se escribe con el signo >

 

  • Menor que ... se escribe con el signo <

 

 

 

 

3.- “APROXIMACIÓN (o redondeo) DE

 

 

NÚMEROS DECIMALES”

 

 

 

 

 

Para aproximar (o redondear) un nº decimal a un orden determinado, debemos:

 

1º.- Ver a qué orden te piden que lo aproximes (es decir, a las Unidades, a las décimas, a las centésimas, ...).

 

2º.- Observar la cifra que ocupa el lugar siguiente (justo a su derecha) del orden al que te piden que lo aproximes.

 

3º.- Si dicha cifra (la más próxima a su derecha) es:

 

Igual o Mayor que 5: el nº se aproximará al posterior.

  

Menor que 5: se aproximará al anterior.



Ejemplo:

 

Aproxima el nº 7,581 a las Unidades:

 

1º.- Me piden aproximar a las Unidades.

 

 

2º.- Debo mirar la cifra que está a la derecha de las Unidades, es decir, las décimas: (5).

 

 

3º.- Como es igual a 5, el nº se aproxima a la unidad posterior, es decir, que 7,581 se aproxima a 8.

Ejemplo:

 

Aproxima el nº 7,581 a las décimas:

 

1º.- Me piden aproximar a las décimas.

 

 

2º.- Debo mirar la cifra que está a la derecha de las décimas, es decir las centésimas: (8).

 

 

3º.- Como es mayor de 5, el nº se aproxima a la décima posterior, es decir, que la décima más próxima del nº 7,581 es = 7,6

Ejemplo:

 

Aproxima el nº 7,581 a las centésimas:

 

1º.- Me piden aproximar a las centésimas.

 

 

2º.- Debo mirar la cifra que está a la derecha de las centésimas, es decir las milésimas: (1).

 

 

3º.- Como es menor de 5, el nº se aproxima a la centésima anterior, es decir, que la centésima más próxima del nº 7,581 es = 7,58